QRod Quick Rod Design

Calgary, Alberta November 28 & 29, 2006

QRod is a Simple User-friendly Practical Beam Pumping Design Program

- Designer Implements State of the Art Beam Pumping Design Technology
- Design and Predict Performance of Sucker Rod Beam Pumping Installations
- Wave Equation Predicts Surface Dynamometer Loads and Polished Rod Position
- Immediately Evaluate Effect of Changing Tubing Anchor, Stroke Length, Stroke Rate, and Pump Diameter

Download free of charge from: www.echometer.com\software\index.html

QRod Pump Cards: Normal Full Pump

Tubing anchored, EPT=MPT.

Unanchored tubing, EPT<MPT

- **1. Pumping-Full of Liquid**
- 2. No gas in Pump.
- 3. Valves Not Leaking
- 4. Pump functioning properly.

Predictive and Diagnostic Models

Beam Pumping Simulator

- 1. Uses the pump intake pressure to determine the load the pump applies to the rods.
- 2. Mathematically simulates the motion of the surface unit
- 3. Solves the partial differential equation describing the motion of the rod string
- 4. Calculates the surface loads, pump velocity and position.
- 5. Determines gear box torque and proper counter balance

Fluid Load is a Function of Pump Intake Pressure

Example: 2260 Psi Discharge Pressure

PIP (Psig)	1	200	500
Fo (Lbs)	4000	3600	3100
Height Gas Free Oil (Csg)	o	602	1514
Fo/ Fomax	100.0%	90.0%	77.5%
Height Oil /Pump Depth	0.0%	11.8%	29.7%

Pump Intake Pressure helps lift fluid to surface.

Echometer QRod 2.4

<u>File T</u>ools <u>H</u>elp

🛣 Echometer QRod 2.4

PPRL 15,595 lbs Pump Stroke 90.0 in Fo/Skr 0.162 MPRL 4,606 lbs Static Stretch 16.2 in Kr. 247 lb/in Fo 3,996 lbs Overtravel 6.2 in Kt 887 lb/in

🛣 Echometer QRod 2.4

PPRL 15,409 lbs Pump Stroke 90.5 in Fo/Skr 0.155 MPRL 4,629 lbs Static Stretch 15.5 in Kr 247 lb/in Fo 3,821 lbs Overtravel 6.0 in Kt 887 lb/in

Echometer QRod 2.4

Echometer QRod 2.4

🌌 Echometer QRod 2.4

PPRL 14,886 lbs Pump Stroke 92.0 in Fo/Skr 0.133 MPRL 4,772 lbs Static Stretch 13.3 in Kr 247 lb/in Fo: 3,291 lbs Overtravel 5.3 in Kt 887 lb/in

🌌 Echometer QRod 2.4

PPRL 14,709 lbs Pump Stroke 92.5 in Fo/Skr 0.126 MPRL 4,841 lbs Static Stretch 12.6 in Kr 247 lb/in Fo 3,114 lbs Overtravel 5.1 in Kt 887 lb/in

Full Pump Card as a Function of Pump Intake Pressure 100% Liquid Fillage, 2260 Discharge Press., 1.5" Plunger Fo = (Pdis - Pintk)*Ap

Pump Intake Pressure helps the Rods lift fluid to surface.

QRod Design

Primary Inputs:
1) <u>Pump Inlet Pres.</u>
2) Pump Depth
3) Target Rate
4) Stroke Length
5) Pump Diameter
6) Stroke Rate

Secondary Inputs:

1) Unit Type

- 2) Rod String Type
- 3) Fluid Spec. Grav.
- 4) Tubing Pressure
- 5) Damping Factor6) Anchored

e Tools Help		
itle My QRod Test Run		
Design Inputs Unit CWConv Pump Depth 5000 Surface Stroke Length 100 Pump Diameter 1.5 Tubing Size 2.875'' (6.4 lb/ft) 2.441'' ID Anchored Tubing Rods	Results Rate (100% Pump eff.) Rate (80% Pump eff.) Rod Taper, % It Top Rod Loading in Min API Unit Rating Min Motor Size Polished Rod Power TVLoad SVLoad	bbl/day bbl/day % hp hp lbs lbs
 Steel Rods Fiberglass and Steel Rods Rod Number 76 Rod Grade D 	Calculate from SPM of Stroke Rate << Target Rate << Calculate	or Target Rate 3.0 >> SPM 71 >> bbl/day
Default Settings		
Total Sinker Bar Weight	Ibs Damping Factor 0.1	1
Fluid Specific Gravity 1	psi Unit Efficiency 95	%
Tubing Pressure 80	psi Pump Efficiency 95	%
Casing Pressure 45	psi	
You may enter Pump Intake Pressure directly,	or calculate it from Reservoir Pressure a	nd Productivity Index.
Reservoir Pressure	psi Productivity Index 2.0)00 bbl/day/psi

🔏 Echometer QRod 2.4

Archivo Útiles Ayuda

- 0 ×

Programa QRod

Título: Mi Prueba en QRod

Resultados

Caudal (100% eficiencia bomba)	180 bbl/day
Caudal (95 eficiencia bomba)	171 bbl/day
% varillas para cada sección	34.0, 66.0
Carga de las varillas en superficie	72.3 %
Capacidad (API) mínima balancín	320-173-100
Capacidad mínima potencia motor	15.8 hp
Potencia en barra pulida	8.5 hp
Carga válvula viajera	11,977 lbs
Carga válvula fija	8,098 lbs

Parametros de Entrada

Tipo de Balancín	CWC
Profundidad de la Bomba	5,000
Caudal deseado	171 k
Velocidad de bombeo	8.3 S
Carrera del balancín	100 i
Diámetro del Pistón	1.500
Diámetro de la tubería	2.875 2.441
Tubería anclada	No
Tipo de varillas	Varilla
Número API de las varillas	76
Clase de varillas	D

Valores de Aiuste Predeterminados

Peso total barras de lastre	0 lb
Gravedad específica del fluido	1
Presión de la tubería	80 psi
Presión del revestidor	45 psi
Factor de amortiguamento	0.1
Eficiencia del balancín	95
Eficiencia de la bomba	95
Presión de entrada de la bomba	50 psi

Diagramas Cartos Dinagrá

Posición (in 14,873 Carga Máxima Carga Minima II bs 82.9 in Elongación

> 0.156 Kr

Posición (in

en Venezuela: varilla = cabilla

Torque (in-lbs

QRod Version 2.3

Angulo (grade

QRod Application Title: My QRod Test Run

Results

Rate (100 % Pump Eff.) Rate (95 Pump Eff.) Rod Taper, % Top Rod Loading Min API Unit Rating Min Motor Size Polished Rod Power TVLoad SVLoad

Design Inputs

Unit Type	CWConv
Pump Depth	5,000 ft
Target Rate	171 bbl/d
Stroke Rate	8.3 SPM
Surface Stroke Length	100 in
Pump diameter	1.500 in
Tubing Size	2.875" (6. 2.441" ID
Anchored Tubing	No
Rod Type	Steel Rod
Rod Number	76
Rod Grade	D
Default Settings	

Total Sinker Bar Weight 0 lb Fluid Specific Gravity 1 **Tubing Pressure** Casing Pressure **Damping Factor** 0.1 Unit Efficiency 95 Pump Efficiency 95 Pump Intake Pressure

Echometer Company

U.S.A.

5001 Ditto Lane Wichita Falls, Texas 76302

180 bbl/day 171 bbl/day 34.0, 66.0 72.3 % 320-173-100 15.8 hp 8.5 hp 11,977 lbs

8.098 lbs lay

4 lb/ft) in is.

80 psi 45 psi 50 psi

One Page Report

QRod Version 2.3

Copyright 2004 Echometer Company. All Rights Reserved. Conditions of Use and Legal Notices

Phone: (940) 767-4334 Fax: (940) 723-7507 E-Mail: info@echometer.com

Echometer Company

PUMPING PERFORMANCE GUIDE From Predictive Dynamometer Design Programs:

- 1. Is the pumping system operating as expected?
- 2. Is the predicted dynamometer in agreement with accurately measured horseshoe dynamometer data?
- 3. If not, the design program may have incorrect data, or the software is not properly predicting well performance.
- 4. Can the performance be improved by a change in pump size, polished rod stroke length, SPM or other factors?

Design a pumping system to pump 350 BPD from a depth of 5000 ft with a .95 fluid specific gravity

API RP11L method determines percentage of each rod size and depends on the pump diameter; resulting in a balanced design with approximately equal stresses at the top of each rod section.

86 - 3 taper rod string 30.0% of 1 inch, 29.5% of 7/8 inch and 40.5% of ³/₄ inch rods.

Loading on the top rod is 91.9% of the allowable for grade "C" rods and calculated using the modified Goodman diagram method.

Echometer QRod 2.0

-lie	TOOIS	нер	

Title My QRod Test Run

Design Inputs

Unit	CWCo	nv	•
Pump Depth	500)0	•
Surface Stroke	Length 144	1	•
Pump Diameter	1.	.75	•
Tubing Size	2.875" (6.4 lb/ft) 2.441"	'ID	•

~	Anchored Tubing
	Anchored rubing

R

lods-		
œ	Steel Rods	

C Fiberglass and S	iteel Rods
--------------------	------------

od Number	86	

Rod Grade C

Rate (100% Pump eff.) Rate (95 % Pump eff.)	368 350	bbl/day bbl/day
Rod Taper, %	30.0, 29.5, 40.5	
Top Rod Loading	91.9	%
Min API Unit Rating	640-200-144	
Min Motor Size	30.0	hp
Polished Rod Power	17.1	hp
TVLoad	14,700	lbs
SVLoad	9,700	lbs

C Stroke Rate	<<	7.7	>>	SPM
Target Rate	<<	350	>>>	bbl/day
Calculate]			

Rod String Design:

Rod at the top of each Rod String Taper:

- 1) Supports the pump forces applied at the bottom of the rod string,
- 2) Plus the weight of the all the rods connecting the pump to the top rod in each taper.
- Rod string is designed for a long operational life
- Planned failure mode due to fatigue <u>10 million cycles</u>
- Wear out the rods
- DO NOT tensile fail due maximum load near the peak tensile strength of the rod.
- Design the string so the unit stresses are equal in the top rod of each of the different-sized sections of the string. Provides good safety margin as far as corrosion pitting is concerned.

Modified Goodman Diagram

Maximum allowable working stresses should not be higher than about 30,000 to 40,000 psi, although some sucker rods, such as the "high tensile strength" rods are rated at 40,000 to 50,000 psi maximum.

Operation of rods in corrosive environments requires that the maximum allowable stress be decreased.

Max. Allowable Stress, Sa = (0.25T + 0.5625*Smin)*SF Allowable Stress Range, Sr = Sa - Smin

Stre	ess Lir	nit	For	New	Rods
Base	d On A	API	-Good	lman	Guide
====			=====		=====
New	Grade	C	Rod	(Psi	.)
New	Grade	K	Rod	(Psi	.)
New	Grade	D	Rod	(Psi	.)
New	Grade	H	Rod	(Psi	.)

Service	Factor 1.0	Peak
T/4	T/1.75	Tensile(T)
======	======	======
23,750	54,286	95, 000
21,250	48,571	85 , 000
28 , 750	65,714	115,000
50,000	50,000	140,000

Rod Loading – Allowable Stress

Top Rod Loadir	ng As % of G	ioodman for Give	en Grades —			
		С	D	K	Н	
	1.0	83.3	68.0	87.2	46.3	Beam Loading
Service Factor	0.85	94.8	77.9	99.1	54.5	54.4 %
	0.60	123.2	102.7	128.4	77.1]
Rod Loading At	Top of Tap	ers As % of Good	dman			
		Top Taper	Taper 2	Taper 3	Taper 4	Taper 5 Taper 6
Rod Type		D	D	D		
Diameter	in	0.875	0.75	0.875		
	1.0	68.0	72.2	27.1		
Service Factor	0.85	77.9	82.6	31.9		
	0.60	102.7	108.6	45.4		
Rod Stress	Max	23144	24826	7752		

Rod Loads/Stresses:

- 1. Loads on the top rod in a taper are the highest
- 2. Load decreases as the suspended rod weight decreases as you move closer to the pump.
- 3. Largest diameter rods are located at the top of the string
- 4. Diameter rod string decreases with the length of each taper
- 5. Results in stresses on the top rod in each taper being equal.

Rod Buckling:

- <u>Use Effective Load</u>
- Rod strings behave as a slender Euler column.
- Buckling occurs under small compressive loading.

Notice:

- 25 Lbs. Buckles > 25 feet of 5/8 Inch Dia. Rod
- 50 Lbs. Buckles > 25 feet of 3/4 Inch Dia. Rod
- 200 Lbs. Buckles > 50 feet of 1 ½ Inch Dia. Rod

Weight Bars/Sinkerbars

- **1. During the pumping cycle Upstroke:**
 - traveling valve shut
 - rod string will be under tension
 - buoyed rods and fluids loads are lifted.
- **2.** During the pumping cycle Down stroke:
 - traveling valve is opened and the standing valve is shut,
 - rods are suspended in fluid and still under tension.
- 3. But any upward force applied to the rod string from the plunger/pump assembly
 - Due to fluid flow in the traveling valve, barrel/plunger friction, compressing gas, etc...
 - Results in compressive (negative) loads
 - Causes rod buckling at the bottom of the rod string above the pump.

Weight Bars/Sinkerbars Sinkerbar.XLS

Sinker Bar Design Inputs

PLUNGER DIA. (Inches) PUMP DEPTH (Feet) MAXIMUM TUBING SPECIFIC GRAVITY (Water=1) Sinker Bar Diameter (Inch)

1.5
5000
1
1.5

Sinker Bar Design Calculations

SPEC.GRAV.:1.0000 USED PLNGR DIA: 1.5000 (In.) 38.1000 (mm) SB FACTOR: 0.415 REQ.SB.WT.: 898.4 (Lbs.) SB. DIA.: 1.50 (In.) 38.10 (mm) SB. LENGTH: 175.0 (Ft.) 53.3 (Meters)

Unit Type Selection

Design Inputs

Unit		CWConv	-	
Pump Depth		5000		ft
Surface Stroke L	ength	100	-	in
Pump Diameter		1.5		in
Tubing Size	2.875" (6.4 lb/l	ft) 2.441'' ID	•	
Anchored T	uhina			

 Steel Rods 	
O Fiberglass a	and Steel Rods
Rod Number	76 💌
Rod Grade	

CWConv - selects the conventional unit with clockwise rotation of the crank.

CCWConv - selects the conventional unit with counter-clockwise rotation of the crank.

Markll - selects the Markll unit with counter-clockwise rotation of the crank.

AirBal - selects the airbalanced unit with clockwise rotation of the crank. Type: A - AIR BALANCE B – BEAM BALANCE C – CONVENTIONAL M – MARK II

Pumping Unit Description C-320D-256-100

Peak Torque Rating in Thousands of IN-LBS

180

Maximum Stroke Length in Inches

Structure Rating in 100s of LBS

90

#1

Wellhead Viewed to the Right: Crank nearest is #1 crank On opposite side #2 crank Counterweights on the Crank On top #1, On the bottom #2

CCW

Echometer QRod 2.0

TTU Test Well 9.72 SPM Clock-Wise Rotation

Compare Calculated and Measured Torque

MOTOR CHARACTERISTICS

NEMA B

C

D

MOTOR CHARACTERISTICS

4% -5% Slip, 180% Starting Torque, Lower Cost and High AMPs 6% -7% Slip, 200% Starting Torque, High Starting AMPs

8% - 13% Slip, 275% Starting Torque, More Efficient under Cyclic loads.

Output HP = Torque x RPM / Constant

kW Input = (HP Output) x 0. 746 / Efficiency

Motor Slip (%) = (Synch. RPM - Running RPM) / Synch. RPM

Where:

Torque= Motor Torque (Ft-Lbs or In-Lbs)rpm= Motor Speed (revolutions per minute)Constant= 5,250 (torque units of Ft-Lbs) or 63,000 (torque units of In-Lbs)HP= Output motor horsepowerkW= HP * 0.746Synch speed = RPM of motor under no load

Size Motor Horsepower Computer: <u>HP = CLF * PRHP / Unit Effcy</u> **QRod uses:** CLF = <u>RMS Torque/ Average Torque</u> **RMS Power/ Average Power is OK.** (don't use CLF based on motor current) **OR:**

<u>Gault: HP = 2. * PRHP</u>

Unit Efficiency: 95 % for "Large" Units 80 % for "Small" Units

Echometer QRod 2.0

File Tools Help

Unit

Pump Depth

Tubing Size

Rods

Counter Balance Moment

Counter Balance Effect

1,155

16.900

Kin-Ibs

lbs

Echometer Company Phone: (940) 767-4334 E-Mail: info@echometer.com Copyright 1994-2004 Echometer Company. All Rights Reserved.

Tubing Unanchored?

Pump Intake pressure is 319 and pump is full of fluid. Tubing Anchor depth is 2914, but anchor appears to not be set.

Questions?

Echometer QRod 2.4

File Tools Help

Questions?

